GSD Documentation
Release 1.6.0

The Regents of the University of Michigan

Jan 22, 2019

Getting started

1 Installation 3
2 Change Log 7
3 User community 9
4 HOOMD 11
5 File layer 15
6 gsd python package 23
7 CAPI 41
8 Specification 47
9 Scripts 67
10 Benchmarks 69
11 License 71
12 Index 73

Python Module Index 75

GSD Documentation, Release 1.6.0

GSD (General Simulation Data) is a file format specification and a library to read and write it. The package also
contains a python module that reads and writes hoomd schema gsd files with an easy to use syntax.

GSD files:
« Efficiently store many frames of data from simulation runs.
* High performance file read and write.
» Support arbitrary chunks of data in each frame (position, orientation, type, etc...).
* Append frames to an existing file with a monotonically increasing frame number.
* Resilient to job kills.
* Variable number of named chunks in each frame.
* Variable size of chunks in each frame.
* Each chunk identifies data type.
* Common use cases: NxM arrays in double, float, int, char types.
* Generic use case: binary blob of N bytes.
» Easy to integrate into other tools with python, or a C API (< 1k lines).

¢ Fast random access to frames.

Getting started 1

https://glotzerlab.engin.umich.edu/hoomd-blue/

GSD Documentation, Release 1.6.0

2 Getting started

CHAPTER 1

Installation

GSD binaries are available in the glotzerlab-software Docker/Singularity images and in packages on conda-forge and
PyPI. You can also compile GSD from source, embed gsd. c in your code, or read gsd files with a single file pure
python reader pygsd. py.

1.1 Binaries

1.1.1 Anaconda package

GSD is available on conda-forge. To install, first download and install miniconda. Then add the conda-forge
channel and install GSD:

$ conda config —--add channels conda-forge
$ conda install gsd

You can update GSD with:

$ conda update gsd

1.1.2 Docker images

Pull the glotzerlab-software image to get GSD along with many other tools commonly used in simulation and analysis
workflows. See full usage information in the glotzerlab-software documentation.

Singularity:

$ singularity pull shub://glotzerlab/software

Docker:

https://glotzerlab-software.readthedocs.io
https://hub.docker.com/
https://www.sylabs.io/
https://conda-forge.org/
https://pypi.org/
https://conda-forge.org/
http://conda.pydata.org/miniconda.html
https://glotzerlab-software.readthedocs.io
https://glotzerlab-software.readthedocs.io

GSD Documentation, Release 1.6.0

$ docker pull glotzerlab/software

1.1.3 PyPI

Use pip to install GSD:

’$ pip install gsd

1.2 Compile from source

Download source releases directly from the web: https://glotzerlab.engin.umich.edu/Downloads/gsd

’$ curl -0 https://glotzerlab.engin.umich.edu/Downloads/gsd/gsd-vl1.6.0.tar.gz

Or, clone using git:

’$ git clone https://bitbucket.org/glotzer/gsd.git

1.2.1 Prerequisites

* A standards compliant C compiler
e Python >=2.7

* numpy

1.2.2 Optional dependencies

e Cython >= (.22 (only needed for non-tagged releases)
¢ nose (unit tests)

* sphinx (documentation)

* ipython (documentation)

¢ an internet connection (documentation)

» cmake (for development builds)

 Python >= 3.2 (to execute unit tests)

1.2.3 Install with setuptools

Use python setup.py to install the python module with setuptools. For example, to install into your home
directory, execute:

$ python setup.py install --user

When using conda, you can install into your conda site-packages with:

4 Chapter 1. Installation

https://glotzerlab.engin.umich.edu/Downloads/gsd

GSD Documentation, Release 1.6.0

’$ python setup.py install

Uninstall using pip:

’$ pip uninstall gsd

1.2.4 Build with cmake for development

You can assemble a functional python module in the build directory. Configure with cmake and compile with make.

mkdir build
cd build
cmake ../
make

v W A

Add /path/to/build to your PYTHONPATH to test GSD, where /path/to is the directory containing your
build directory.

$ export PYTHONPATH=SPYTHONPATH:/path/to/build

1.2.5 Run tests

GSD has extensive unit tests to verify correct execution. Tests require python 3.2 or newer to execute.

Run nosetests in the source directory to execute all unit tests. This requires that the python module is on the
python path.

$ cd /path/to/gsd
$ nosetests

1.2.6 Build user documentation

Build the user documentation with sphinx. ipython is also required to build the documentation, as is an active
internet connection. To build the documentation:

cd /path/to/gsd

cd doc

make html

open _build/html/index.html

v W

1.2.7 Using the C library

GSD is implemented in less than 1k lines of C code. It doesn’t build a shared library, just copy gsd/gsd.h and
gsd/gsd. c into your project and compile it directly in.

1.2.8 Using the pure python reader

If you only need to read files, you can skip installing and just extract the module modules gsd/pygsd.py and gsd/
hoomd. py. Together, these implement a pure-python reader for GSD and hoomd files - no C compiler required.

1.2. Compile from source 5

GSD Documentation, Release 1.6.0

6 Chapter 1. Installation

CHAPTER 2

Change Log

gsd releases follow semantic versioning.

2.1 v1.6.0 (2018-12-20)

* The length of sliced HOOMDTrajectory objects can be determined with the built-in len() function.

2.2 v1.5.5 (2018-11-28)

* Silence numpy deprecation warnings

2.3 v1.5.4 (2018-10-04)

* Add pyproject.toml file that defines numpy as a proper build dependency (requires pip >= 10)

* Reorganize documentation

2.4 v1.5.3 (2018-05-22)

* Revert setup.py changes in v1.5.2 - these do not work in most circumstances.

* Include sys/stat .h on all architectures.

2.5 v1.5.2 (2018-04-04)

* Close file handle on errors in gsd_open.

https://bitbucket.org/glotzer/gsd
https://semver.org/

GSD Documentation, Release 1.6.0

» Always close file handle in gsd_close.

* setup.py now correctly pulls in the numpy dependency.

2.6 v1.5.1 (2018-02-26)

¢ Documentation fixes.

2.7 v1.5.0 (2018-01-18)

* Read and write HPMC shape state data.

2.8 v1.4.0 (2017-12-04)

* Support reading and writing chunks with 0 length. No schema changes are necessary to support this.

2.9 v1.3.0 (2017-11-17)

¢ Document state entries in the HOOMD schema.

* No changes to the gsd format or reader code in v1.3.

2.10 v1.2.0 (2017-02-21)

* Add gsd.hoomd. open () method which can create and open hoomd gsd files.
* Add gsd. fl.open () method which can create and open gsd files.

 The previous create/class GSDFile instantiation is still supported for backward compatibility.

2.11 v1.1.0 (2016-10-04)

* Add special pairs section pairs/ to HOOMD schema.

¢ HOOMD schema version is now 1.1.

2.12 v1.0.1 (2016-06-15)

* Fix compile error on more strict POSIX systems.

2.13 v1.0.0 (2016-05-24)

Initial release.

8 Chapter 2. Change Log

CHAPTER 3

User community

3.1 hoomd-users mailing list

GSD primarily exists as a HOOMD file format, so the we use the hoomd-users mailing list. Subscribe for release
announcements, to post questions questions for advice on using the software, and discuss potential new features.

3.2 Issue tracker

File bug reports on GSD’s issue tracker.

3.3 Contribute

GSD is an open source project. Contributions are accepted via pull request to GSD’s bitbucket repository. Please
review CONTRIBUTING.MD in the repository before starting development. You are encouraged to discuss your
proposed contribution with the GSD user and developer community who can help you design your contribution to fit
smoothly into the existing ecosystem.

https://groups.google.com/d/forum/hoomd-users
https://bitbucket.org/glotzer/gsd/issues?status=new&status=open
https://bitbucket.org/glotzer/GSD

GSD Documentation, Release 1.6.0

10 Chapter 3. User community

CHAPTER 4

HOOMD

gsd. hoomd provides high-level access to HOOMD schema GSD files.

View the page source to find unformatted example code that can be easily copied.

4.1 Define a snapshot

In [1]: s = gsd.hoomd.Snapshot ()

In [2]: s.particles.N = 4

In [3]: s.particles.types = ['A', 'B']

In [4]: s.particles.typeid = [0,0,1,1]

In [5]: s.particles.position = [[0O,0,0],1(1,1,11, [-1,-1,-11, [1,-1,-11]

In [6]: s.configuration.box = [3, 3, 3, 0, 0, 0]

gsd. hoomd represents the state of a single frame with an instance of the class gsd. hoomd. Snapshot. Instantiate
this class to create a system configuration. All fields default to None and are only written into the file if not None and
do not match the data in the first frame, or defaults specified in the schema.

4.2 Create a hoomd gsd file

In [7]: gsd.hoomd.open (name="'test.gsd', mode='wb'")
Out[7]: <gsd.hoomd.HOOMDTrajectory at 0x7fd43c7e64a8>

11

GSD Documentation, Release 1.6.0

4.3 Append frames to a gsd file

In [8]: def create_frame(i):
s = gsd.hoomd.Snapshot ()
s.configuration.step = 1i
s.particles.N = 4+1
s.particles.position = numpy.random.random(size=(4+1i,3))

return s
In [9]: t = gsd.hoomd.open (name="test.gsd', mode="wb")
In [10]: t.extend(

(create_frame (i) for i in range(10)))

In [11]: t.append(create_frame(1l1l))

length is 12 because extend added 10,

and append added 1

In [12]:
Out[12]:

len(t)
11

Use gsd.hoomd. open () to open a GSD file with the high level interface gsd. hoomd. HOOMDTra jectory.
It behaves like a python list, with gsd.hoomd.HOOMDTrajectory.append () and gsd.hoomd.
HOOMDTrajectory.extend () methods.

Note: gsd.hoomd.HOOMDTrajectory currently doesn’t support files opened in append mode.

Tip: When using gsd. hoomd. HOOMDTra jectory.extend (), pass in a generator or generator expression to
avoid storing the entire trajectory in RAM before writing it out.

4.4 Randomly index frames

In [13]: t = gsd.hoomd.open (name='test.gsd', mode='rb')

In [14]: snap = t[5]

In [15]: snap.configuration.step

Out[15]: 5

In [16]: snap.particles.N

AMAANNANN\\NOut [16]: 9

In [17]: snap.particles.position

AN Out [17] ¢

array ([[0.26287043, 0.01489691, 0.271737647,
[0.41353083, 0.99746978, 0.07018846],
[0.35447809, 0.29926652, 0.41119143],
[0.37697774, 0.17814329, 0.74936742]1,
[0.83566165, 0.38118467, 0.73606944],
[0.28123149, 0.34518304, 0.7526316 1],
[0.17162906, 0.99213839, 0.15882799],

(continues on next page)

12

Chapter 4. HOOMD

https://docs.python.org/3/library/stdtypes.html#list

GSD Documentation, Release 1.6.0

(continued from previous page)

[0.79084855, 0.13285285, 0.63064516],
[0.92602605, 0.40481371, 0.45849264]1], dtype=float32)

gsd.hoomd.HOOMDTra jectory supports random indexing of frames in the file. Indexing into a trajectory returns
a gsd.hoomd. Snapshot.

4.5 Slicing

In [18]: t = gsd.hoomd.open (name='"test.gsd', mode="'rb'")

In [19]: for s in t[5:-2]:
el print (s.configuration.step, end=' ")

Slicing access works like you would expect it to.

4.6 Pure python reader

In [20]: f = gsd.pygsd.GSDFile (open('test.gsd', 'rb'))

In [21]: t gsd.hoomd.HOOMDTrajectory (f) ;

In [22]: t[3].particles.position

Oout [22]:
array ([[0.84609461, 0.92773199, 0.676710017,
[0.08227015, 0.13824089, 0.23231019],
[0.57331008, 0.80602533, 0.53372973],
[0.39812082, 0.92507088, 0.66668856],
[0.70093876, 0.49886867, 0.83886379],
[0.06800529, 0.69959366, 0.81296682],
[0.66601562, 0.85945165, 0.12780403]], dtype=float32)

You can use GSD without needing to compile C code to read GSD files using gsd. pygsd. GSDF i 1e in combination
with gsd. hoomd.HOOMDTra jectory. It only supports the rb mode and does not read files as fast as the C
implementation. It takes in a python file-like object, so it can be used with in-memory IO classes, grid file classes that
access data over the internet, etc. ..

4.7 Access state data

In [23]: with gsd.hoomd.open (name='test2.gsd', mode='wb') as t:

..... s = gsd.hoomd. Snapshot ()

..... s.particles.types = ['A', 'B']

..... s.state['hpmc/convex_polygon/N'] = [3, 4]

..... s.state['hpmc/convex_polygon/vertices'] = [[-1, -1],
..... [, -11,
..... (1, 11,
..... (-2, =21,
..... [2, —-21,

(continues on next page)

4.5. Slicing 13

GSD Documentation, Release 1.6.0

(continued from previous page)

t.append(s)

State data is stored in the state dictionary as numpy arrays. Place data into this dictionary directly without the
‘state/” prefix and gsd will include it in the output. Shape vertices are stored in a packed format. In this example, type
‘A’ has 3 vertices (the first 3 in the list) and type ‘B’ has 4 (the next 4).

In [24]: with gsd.hoomd.open (name='test2.gsd', mode='rb') as t:
e s = t[0]
e print (s.state['hpmc/convex_polygon/N'])
e print (s.state['hpmc/convex_polygon/vertices'])

— e e W

|

DN DNDN R PR
|
)

Access read state data in the same way.

14 Chapter 4. HOOMD

CHAPTER B

File layer

The file layer python module gsd. £1 allows direct low level access to read and write gsd files of any schema. The
hoomd reader (gsd. hoomd) provides higher level access to hoomd schema files, see HOOMD.

View the page source to find unformatted example code that can be easily copied.

5.1 Open a gsd file

In [1]: £ = gsd.fl.open(name="file.gsd",
: mode="wb',
application="My application",
schema="My Schema",
schema_version=[1,0])

In [2]: f.close()

Warning: Opening a gsd file with a ‘w’ or ‘x” mode overwrites any existing file with the given name.

5.2 Write data

In [3]: £ = gsd.fl.open(name="file.gsd",
: mode="wb"',
application="My application",
schema="My Schema",
schema_version=[1,0]);

(continues on next page)

15

GSD Documentation, Release 1.6.0

(continued from previous page)

In [4]: f.write_chunk (name='chunkl', data=numpy.array([l,2,3,4], dtype=numpy.float32))

In [5]: f.write_chunk (name='chunk2', data=numpy.array([[5,6],[7,8]1], dtype=numpy.
—~float32))

In [6]: f.end_frame/()

In [7]: f.write_chunk (name='chunkl', data=numpy.array([9,10,11,12], dtype=numpy.
—~float32))

In [8]: f.write_chunk (name='chunk2', data=numpy.array ([[13,14],[15,16]], dtype=numpy.
—~float32))

In [9]: f.end_frame/()

In [10]: f.close()

Call gsd. f1.open () to access gsd files on disk. Add any number of named data chunks to each frame in the
file with gsd. f1.GSDFile.write_chunk (). The data must be a 1 or 2 dimensional numpy array of a simple
numeric type (or a data type that will automatically convert when passed to numpy . array (data). Call gsd. 1.
GSDFile.end_ frame () to end the frame and start the next one.

Note: While supported, implicit conversion to numpy arrays creates a 2nd copy of the data in memory and adds
conversion overhead.

Warning: Make sure to call end_frame () before closing the file, or the last frame is lost.

5.3 Read data

In [11]: £ = gsd.fl.open(name="file.gsd",
e mode="rb',
e application="My application",
et schema="My Schema",
e schema_version=[1,0])

In [12]: f.read_chunk (frame=0, name='chunkl")
Out[12]: array([1., 2., 3., 4.1, dtype=float32)

In [13]: f.read_chunk (frame=1, name='chunk2")
ATV LD DV VNN NN\ Out [13] ¢
array ([[13., 14.],

[15., 16.]], dtype=float32)

In [14]: f.close()

gsd.f1l.GSDFile.read chunk () reads the named chunk at the given frame index in the file and returns it as a
numpy array.

16 Chapter 5. File layer

GSD Documentation, Release 1.6.0

5.4 Test if a chunk exists

In [15]: £ = gsd.fl.open(name="file.gsd",
et mode="rb',
et application="My application",
R schema="My Schema",
e schema_version=[1,0])

In [16]: f.chunk_exists (frame=0, name='chunkl")
Out[1l6]: True

In [17]: f.chunk_exists(frame=1, name='chunk2")

AMAANNNNNNNNNNNNOuE [17] 2 True

In [18]: f.chunk_exists(frame=2, name='chunkl")

AN\ Out [18] 1 False

In [19]: f.close()

gsd.fl.GSDFile.chunk_exists () tests to see if a chunk by the given name exists in the file at the given
frame.

5.5 Read-only access

In [20]: f = gsd.fl.open(name="file.gsd",
et mode="rb',
et application="My application",
et schema="My Schema",
e schema_version=[1,0])

In [21]: if f.chunk_exists(frame=0, name='chunkl'):
e data = f.read_chunk (frame=0, name='chunkl'")

In [22]: data
Out[22]: array([1., 2., 3., 4.1, dtype=float32)

Fails because the file is open read only

In [23]: f.write_chunk (name='error', data=numpy.array ([1]))

A e R T S N
RuntimeError Traceback (most recent call last)
<ipython-input-23-c9aabea264la> in <module> ()

-——-> 1 f.write_chunk (name='error', data=numpy.array([1l]))

fl.pyx in gsd.fl.GSDFile.write_chunk ()

RuntimeError: GSD file is opened read only: file.gsd

In [24]: f.close()

Files opened in read only (rb) mode can be read from, but not written to. The read-only mode is tuned for high
performance reads with minimal memory impact and can easily handle files with tens of millions of data chunks.

5.4. Test if a chunk exists 17

GSD Documentation, Release 1.6.0

5.6 Access file metadata

In [25]: f = gsd.fl.open(name="file.gsd",
et mode="rb',
et application="My application",
et schema="My Schema",
e schema_version=[1,0])

In [26]: f.name
Out[26]: 'file.gsd'

In [27]: f.mode
AN\ OuE [27] 0 "rb!

In [28]: f.gsd_version
MMMV VNN Out [28] ¢ (1, 0)

In [29]: f.application
AT LV A AV VNN AN AN\ Out [29] ¢ "My application'

In [30]: f.schema

AT LRV AN Ot [307] -
—'My Schema'

In [31]: f.schema_version

R R R R N N N R R R R N R N R R N R N N R N R N N N N N S S R R R R RN
— (1, 0)

In [32]: f.nframes
AT DAL ATV VNV
2

In [33]: f.close()

5.7 Open a file in read/write mode

In [34]: f = gsd.fl.open(name="file.gsd",
e mode="wb+"',
el application="My application",
et schema="My Schema",
e schema_version=[1,0])

In [35]: f.write_chunk (name='double', data=numpy.array([1l,2,3,4], dtype=numpy.
—~float6d));

In [36]: f.end_frame ()

In [37]: f.nframes
Out[37]: 1

In [38]: f.read_chunk (frame=0, name='double')
ANANWWAN\N\\Out [38]: array ([1., 2., 3., 4.])

18 Chapter 5. File layer

AN\ Out

ANV

GSD Documentation, Release 1.6.0

Files in read/write mode ('wb+' or 'rb+') are inefficient. Only use this mode if you must read and write to the
same file, and only if you are working with relatively small files with fewer than a million data chunks. Prefer append
mode for writing and read-only mode for reading.

5.8 Write a file in append mode

In [39]: f = gsd.fl.open(name="file.gsd",
e mode="ab',
et application="My application",
R schema="My Schema",
e schema_version=[1,0])

In [40]: f.write_chunk (name="'"int', data=numpy.array([10,20], dtype=numpy.intl6));
In [41]: f.end_frame ()

In [42]: f.nframes
Out [42]: 2

Reads fail in append mode

In [43]: f.read_chunk (frame=2, name='double')

R R
KeyError Traceback (most recent call last)
<ipython—-input-43-cab5bl0£d02b> in <module> ()

—-——-=> 1 f.read_chunk (frame=2, name='double')

fl.pyx in gsd.fl.GSDFile.read_chunk ()
KeyError: 'frame 2 / chunk double not found in: file.gsd'

In [44]: f.close()

Append mode is extremely frugal with memory. It only caches data chunks for the frame about to be committed
and clears the cache on a call to gsd. f1.GSDFile.end frame (). This is especially useful on supercomputers
where memory per node is limited, but you may want to generate gsd files with millions of data chunks.

5.9 Use as a context manager

In [45]: with gsd.fl.open(name="file.gsd",
et mode="rb',
et application="My application",
et schema="My Schema",
et schema_version=[1,0]) as f:
et data = f.read_chunk (frame=0, name='double');

In [46]: data
Out[46]: array([1., 2., 3., 4.71)

gsd. f1.GSDF1ile works as a context manager for guaranteed file closure and cleanup when exceptions occur.

5.8. Write a file in append mode 19

GSD Documentation, Release 1.6.0

5.10 Store string chunks

In [47]: £ = gsd.fl.open(name="file.gsd",
e mode="wb+"',
et application="My application",
R schema="My Schema",
e schema_version=[1,0])

In [48]: f.mode
Out[48]: 'wb+'

In [49]: s = "This is a string"

In [50]: b = numpy.array([s], dtype=numpy.dtype((bytes, len(s)+1l)))

In [51]: b = b.view(dtype=numpy.int8)

In [52]: b

Out[52]:

array ([84, 104, 105, 115, 32, 105, 115, 32, 97, 32, 115, 1le, 114,
105, 110, 103, 0], dtype=int38)

In [53]: f.write_chunk (name='string', data=b)

In [54]: f.end_frame /()

In [55]: r = f.read_chunk (frame=0, name='string'")
In [56]: r
Out [56] :

array ([84, 104, 105, 115, 32, 105, 115, 32, 97, 32, 115, 116, 114,
105, 110, 103, 0], dtype=int38)

In [57]: r = r.view(dtype=numpy.dtype ((bytes, r.shapel[0])));

In [58]: r[0].decode('UTF-8")
Out[58]: 'This is a string'

In [59]: f.close()

To store a string in a gsd file, convert it to a numpy array of bytes and store that data in the file. Decode the byte
sequence to get back a string.

5.11 Truncate

In [60]: f = gsd.fl.open(name="file.gsd",
et mode="'ab',
e application="My application",
e schema="My Schema",
e schema_version=[1,0])

In [61]: f.nframes

(continues on next page)

20 Chapter 5. File layer

GSD Documentation, Release 1.6.0

(continued from previous page)

Out[61]: 1
In [62]: f.schema, f.schema_version, f.application
AWM\ Out [62]: ('My Schema', (1, 0), 'My application')

In [63]: f.truncate()

In [64]: f.nframes
Out[64]: O

In [65]: f.schema, f.schema_version, f.application
AN\ Out [65]: ('My Schema', (1, 0), 'My application')

Truncating a gsd file removes all data chunks from it, but retains the same schema, schema version, and applicaiton
name. The file is not closed during this process. This is useful when writing restart files on a Lustre file system when
file open operations need to be kept to a minimum.

5.11. Truncate 21

GSD Documentation, Release 1.6.0

22 Chapter 5. File layer

CHAPTER O

gsd python package

GSD provides an optional python API. This is the most convenient way for users to read and write GSD files. Devel-
opers, or users not working with the python language, may want to use the C API.

6.1 Submodules

6.1.1 gsd.fl module

GSD file layer APIL

Low level access to gsd files. gsd. 1 allows direct access to create, read, and write gsd files. The module is
implemented in C and is optimized. See File layer for detailed example code.

* GSDF1ile - Class interface to read and write gsd files.
e create () - Create a gsd file (deprecated).
e open () - Open a gsd file.

class gsd.fl.GSDFile (name, mode, application, schema, schema_version)
GSD file access interface.

GSDFile implements an object oriented class interface to the GSD file layer. Use open () to open a GSD file
and obtain a GSDFile instance. GSDF'i 1 e can be used as a context manager.

Changed in version 1.2: For new code, use open () instead of constructing GSDFile directly. GSDFile.__init__
is backwards compatible with the old open syntax used in GSD versions 1.0.x and 1.1.x.

name
Name of the open file (read only).

Type str

mode
Mode of the open file (read only).

Type str

23

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

GSD Documentation, Release 1.6.0

gsd_version
GSD file layer version number [major, minor] (read only).

Type tuple[int]

application
Name of the generating application (read only).

Type str

schema
Name of the data schema (read only).

Type str

schema_version
Schema version number [major, minor] (read only).

Type tuple[int]

nframes
Number of frames (read only).

Type int

chunk_exists (frame, name)
Test if a chunk exists.

Parameters
e frame (int) - Index of the frame to check
¢ name (st r)— Name of the chunk
Returns True if the chunk exists in the file. False if it does not.

Return type bool

Example

In [1]: with gsd.fl.open(name="file.gsd', mode='wb', application="My_,
—application", schema="My Schema", schema_version=[1,0]) as f:
et f.write_chunk (name="'chunkl', data=numpy.array([1l,2,3,4]1,,
—dtype=numpy.float32));
Ll f.write_chunk (name='chunk2', data=numpy.array([[5,6],[7,81],.
—dtype=numpy.float32));
: f.end_frame();
L. f.write_chunk (name='chunkl', data=numpy.array([9,10,11,12],
—dtype=numpy.float32));
L f.write_chunk (name="'chunk?2', data=numpy.array ([[13,14],[15,16]]
—dtype=numpy.float32));
: f.end_frame();

o

In [2]: f = gsd.fl.open(name="'file.gsd', mode='rb', application="My_,
—application", schema="My Schema", schema_version=[1,0])

In [3]: f.chunk_exists(frame=0, name='chunkl")
Out[3]: True

In [4]: f.chunk_exists(frame=0, name='chunk2'")

(continues on next page)

24 Chapter 6. gsd python package

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

GSD Documentation, Release 1.6.0

(continued from previous page)

MM\ Out [4] 1 True

In [5]: f.chunk_exists (frame=0, name='chunk3")
ANV N\ Out [5] ¢ False

In [6]: f.chunk_exists (frame=10, name='chunkl")

ATV VNNV VNV Out [6] ¢ False

close ()
Close the file.

Once closed, any other operation on the file object will result in a ValueError. close () may be called
more than once. The file is automatically closed when garbage collected or when the context manager
exits.

Example

In [1]: £ = gsd.fl.open(name="file.gsd', mode='wb+', application="My_,
—application", schema="My Schema", schema_version=[1,0])

In [2]: f.write_chunk (name='chunkl', data=numpy.array([l,2,3,4], dtype=numpy.
—float32))

In [3]: f.end_frame();
In [4]: data = f.read_chunk (frame=0, name='chunkl")
In [5]: f.close()

Read fails because the file is closed

In [6]: data = f.read_chunk (frame=0, name='chunkl")

ValueError Traceback (most recent call last)
<ipython-input-6-235a7eaf209c> in <module> ()

-——-> 1 data = f.read_chunk (frame=0, name='chunkl")

fl.pyx in gsd.fl.GSDFile.read_chunk ()

ValueError: File is not open

end_ frame ()
Complete writing the current frame. After calling end_frame () future calls to write_chunk () will
write to the next frame in the file.

Danger: Call end frame () to complete the current frame before closing the file. If you fail to call
end_frame (), the last frame may not be written to disk.

Example

In [1]: £ = gsd.fl.open(name="file.gsd', mode='wb', application="My,,
—application", schema="My Schema", schema_version=[1,0])

(continues on next page)

. Submodules 25

GSD Documentation, Release 1.6.0

(continued from previous page)

In [2]: f.write_chunk (name="'chunkl',
—~float32));
In [3]: f.end_frame();

In [4]: f.write_chunk (name="'chunkl',
—dtype=numpy.float32));
In [5]: f.end_frame();

In [6]: f.write_chunk (name="'chunkl',
—~float32));

In [7]: f.end _frame();
In [8]: f.nframes
Out[8]: 3

dtype=numpy .

data=numpy.array([1,2,3,4],

data=numpy.array([9,10,11,1271,

data=numpy.array ([13,14], dtype=numpy.

read_chunk (frame, name)

Read a data chunk from the file and return it as a numpy array.

Parameters

e frame (int)— Index of the frame to read

¢ name (st r)— Name of the chunk

Returns Data read from file. type is determined by the chunk metadata. If the data is NxM in
the file and M > 1, return a 2D array. If the data is Nx1, return a 1D array.

Return type numpy.ndarray[type,

ndim=7?,

mode="'c"']

Tip: Each call to invokes a disk read and allocation of a new numpy array for storage. To avoid overhead,
don’t call read chunk () on the same chunk repeatedly. Cache the arrays instead.

Example

In [1]:
—application", schema="My Schema",
—dtype=numpy.float32));

—dtype=numpy.float32));
: f.end_frame();

—dtype=numpy.float32));
—dtype=numpy.float32));

f.end_frame();

In [2]: f =
—application”, schema="My Schema",

In [3]: f.read_chunk (frame=0,

with gsd.fl.open(name='file.gsd"',
schema_version=[1,0])
f.write_chunk (name="'chunkl',

f.write_chunk (name="'chunk2',

f.write_chunk (name="'chunkl',

f.write_chunk (name="'chunk2',

gsd.fl.open(name="file.gsd',
schema_version=[1,0])

mode="'wb', application="My_,

as f:
data=numpy.array ([1,2,3,4],

data=numpy.array ([[5,6]1,[7,811,.

data=numpy.array([9,10,11,127,

data=numpy.array ([[13,14],[15,16]1],.

mode="'rb', application="My_,

name="'chunkl")

(continues on next page)

26

Chapter 6. gsd python package

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

GSD Documentation, Release 1.6.0

(continued from previous page)

Out[3]: array([1., 2., 3., 4.1, dtype=float32)

In [4]: f.read_chunk (frame=1, name='chunkl")

ATV VDLV VLDV VAN NN\ Out [4] : array ([9., 10.,_
- 11., 12.], dtype=float32)

In [5]: f.read_chunk (frame=2, name='chunkl")

N N N N R R N N N N N N N N N N N N N R R N N N N N N N N N N N N N N N N RN AR AR RN R RN
KeyError Traceback (most recent call last)
<ipython-input-5-f2a5b71c0390> in <module> ()
-———> 1 f.read_chunk (frame=2, name='chunkl')

fl.pyx in gsd.fl1.GSDFile.read_chunk ()

KeyError: 'frame 2 / chunk chunkl not found in: file.gsd'

truncate ()
Truncate all data from the file. After truncation, the file has no frames and no data chunks. The application,
schema, and schema version remain the same.

Example

In [1]: with gsd.fl.open(name="file.gsd', mode='wb', application="My_,
—application", schema="My Schema", schema_version=[1,0]) as f:
for i in range (10):
e f.write_chunk (name="'chunkl', data=numpy.array([1l,2,3,4],.
—dtype=numpy.float32))
e f.end_frame();

In [2]: f = gsd.fl.open(name="'file.gsd', mode='ab', application="My_,
—application", schema="My Schema", schema_version=[1,0])

In [3]: f.nframes
Out[3]: 10

In [4]: f.schema, f.schema_version, f.application
AN\ Out [4]: ('"My Schema', (1, 0), 'My application')

In [5]: f.truncate()

In [6]: f.nframes
Out[6]: O

In [7]: f.schema, f.schema_version, f.application
AN\WAAN\\\\Out [7]: ('My Schema', (1, 0), 'My application')

write_chunk (name, data)
Write a data chunk to the file. After writing all chunks in the current frame, call end frame ().

Parameters
¢ name (st r)— Name of the chunk

* data - Data to write into the chunk. Must be a numpy array, or array-like, with 2 or fewer
dimensions.

. Submodules 27

https://docs.python.org/3/library/stdtypes.html#str

GSD Documentation, Release 1.6.0

Warning: write_chunk () will implicitly converts array-like and non-contiguous numpy arrays
to contiguous numpy arrays with numpy.ascontiguousarray (data). This may or may not
produce desired data types in the output file and incurs overhead.

Example

In [1]: £ = gsd.fl.open(name="'file.gsd', mode='wb', application="My_,
—application", schema="My Schema", schema_version=[1,0])

In [2]: f.write_chunk (name='floatld', data=numpy.array([1l,2,3,4], dtype=numpy.
—~float32));

In [3]: f.write_chunk (name='float2d', data=numpy.array([[13,14]1,[15,16]1,[17,
1911, dtype=numpy.float32));

In [4]: f.write_chunk (name="'double2d', data=numpy.array([[1,4]1,[5,61,[7,911,.
—dtype=numpy.float64));

In [5]: f.write_chunk (name='intld', data=numpy.array([70,80,90], dtype=numpy.
—into6d));

In [6]: f.end_frame();

In [7]: f.nframes
Out[7]: 1

In [8]: f.close()

gsd. fl.create (name, application, schema, schema_version)
Create an empty GSD file on the filesystem.

Deprecated since version 1.2: As of version 1.2, you can create and open GSD files in the same call to open ().
create () is kept for backwards compatibility.

Parameters
* name (str)— File name to open.
* application (str)— Name of the application creating the file.
¢ schema (st r)— Name of the data schema.

* schema_version (1ist [int])— Schema version number [major, minor].

Example

Create a gsd file:

In [1]: gsd.fl.create(name="file.gsd",
: application="My application",
schema="My Schema",
schema_version=[1,0]);

28 Chapter 6. gsd python package

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

GSD Documentation, Release 1.6.0

Danger: The file is overwritten if it already exists.

gsd. fl.open (name, mode, application, schema, schema_version)
open () opens a GSD file and returns a GSDF i] e instance. The return value of open () can be used as a
context manager.

Parameters

* name (st r) — File name to open.

* mode (st r)— File access mode.

* application (str)— Name of the application creating the file.
¢ schema (str)— Name of the data schema.

* schema_version (list [int])— Schema version number [major, minor].

Valid values for mode:

mode| description

'rb'| Open an existing file for reading.

'rb+[Open an existing file for reading and writing. Inefficient for large files.

'wb'| Open a file for writing. Creates the file if needed, or overwrites an existing file.

'wb+[Open a file for reading and writing. Creates the file if needed, or overwrites an existing file. Inefficient
for large files.

'xb"'| Create a gsd file exclusively and opens it for writing. Raise an FileExistsError exception if it
already exists.

'xb+| Create a gsd file exclusively and opens it for reading and writing. Raise an FileExistsError
exception if it already exists. Inefficient for large files.

'ab'| Open an existing file for writing. Does not create or overwrite existing files.

The ‘+° read/write modes are inefficient at handling large files, as they read the entire file index into memory.

Prefer the appropriate read or write only modes.

When opening a file forreading ('r' or 'a' modes): applicationand schema_version areignored.
open () throws an exception if the file’s schema does not match schema.

When opening a file for writing ('w' or 'x' modes): The given application, schema, and
schema_version are saved in the file.

New in version 1.2.

Example

In [1]

: with gsd.fl.open(name='file.gsd', mode='wb', application="My application",

— schema="My Schema", schema_version=[1,0]) as f:

—~float32));

f.write_chunk (name="'chunkl', data=numpy.array([1l,2,3,4], dtype=numpy.

f.write_chunk (name="'chunk2', data=numpy.array([[5,6],[7,811,.

—dtype=numpy.float32));

—dtype=numpy.float32));

f.end_frame();
f.write_chunk (name="'chunkl', data=numpy.array([9,10,11,12]

o

f.write_chunk (name="'chunk2', data=numpy.array([[13,14],[15,1611,.

—dtype=numpy.float32));

(continues on next page)

6.1.

Submodules 29

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#FileExistsError
https://docs.python.org/3/library/exceptions.html#FileExistsError

GSD Documentation, Release 1.6.0

(continued from previous page)

f.end_frame();

In [2]: f = gsd.fl.GSDFile(name='file.gsd', mode="'rb'");
In [3]: if f.chunk_exists (frame=0, name='chunkl'):

data = f.read_chunk (frame=0, name='chunkl'")

In [4]: data
Out[4]: array([1., 2., 3., 4.], dtype=float32)

6.1.2 gsd.pygsd module

GSD reader written in pure python

pygsd.py is a pure python implementation of a GSD reader. If your analysis tool is written in python and you want
to embed a GSD reader without requiring C code compilation, then use the following python files from the gsd/
directory to make a pure python reader. It is not as high performance as the C reader, but is reasonable for files up to a
few thousand frames.

* gsd/
- __init___.py
- pygsd.py
— hoomd.py

The reader reads from file-like python objects, which may be useful for reading from in memory buffers, in-database
grid files, etc. .. For regular files on the filesystem, and for writing gsd files, use gsd. £ 1.

The GSDF i 1e in this module can be used with the gsd. hoomd. HOOMD Tra ject ory hoomd reader:

>>> with gsd.pygsd.GSDFile('test.gsd', 'rb') as f:
t = gsd.hoomd.HOOMDTrajectory (f);
pos = t[0].particles.position

class gsd.pygsd.GSDFile (file)
GSD file access interface. Implemented in pure python and accepts any python file-like object.

Parameters file - File-like object to read.

GSDFile implements an object oriented class interface to the GSD file layer. Use it to open an existing file in a
read-only mode. For read-write access to files, use the full featured C implementation in gsd. 1. Otherwise,
this implementation has all the same methods and the two classes can be used interchangeably.

Examples

Open a file in read-only mode:

f = GSDFile(open('file.gsd', mode='rb'));
if f.chunk_exists (frame=0, name='chunk'):
data = f.read_chunk (frame=0, name='chunk');

Access file metadata:

30 Chapter 6. gsd python package

GSD Documentation, Release 1.6.0

f = GSDFile(open('file.gsd', mode='rb'));

print (f.name, f.mode, f.gsd_version);

print (f.application, f.schema, f.schema_version);
print (f.nframes);

Use as a context manager:

with GSDFile (open('file.gsd', mode='rb')) as f:
data = f.read_chunk (frame=0, name='chunk');

file
File-like object opened (read only).

Type file-like

name
file.name (read only).
Type str
mode

Mode of the open file (read only).
Type str

gsd_version
GSD file layer version number [major, minor] (read only).

Type tuple[int]

application
Name of the generating application (read only).

Type str

schema
Name of the data schema (read only).

Type str

schema_version
Schema version number [major, minor] (read only).

Type tuple[int]

nframes
Number of frames (read only).

Type int

chunk_exists (frame, name)
Test if a chunk exists.

Parameters
e frame (int) - Index of the frame to check
¢ name (str)— Name of the chunk
Returns True if the chunk exists in the file. False if it does not.

Return type bool

6.1. Submodules 31

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

GSD Documentation, Release 1.6.0

Example

Handle non-existent chunks:

with GSDFile(open('file.gsd', mode='rb')) as f:
if f.chunk_exists (frame=0, name='chunk'):
return f.read_chunk (frame=0, name='chunk');
else:
return None;

close ()
Close the file.

Once closed, any other operation on the file object will result in a ValueError. close () may be called
more than once. The file is automatically closed when garbage collected or when the context manager
exits.

read_chunk (frame, name)
Read a data chunk from the file and return it as a numpy array.

Parameters
¢ frame (int) - Index of the frame to read
¢ name (st r)— Name of the chunk
Returns

Data read from file. type is determined by the chunk metadata. If the data is NxM in the
file and M > 1, return a 2D array. If the data is Nx1, return a 1D array.

Return type numpy.ndarray[type, ndim=?, mode='c']

Examples

Read a 1D array:

with GSDFile (name=filename, mode='rb') as f:

data = f.read_chunk (frame=0, name='chunkld');
data.shape == [N]

Read a 2D array:

with GSDFile (name=filename, mode='rb') as f:
data = f.read_chunk (frame=0, name='chunk2d');
data.shape == [N,M]

Read multiple frames:

with GSDFile (name=filename, mode='rb') as f:
data0 = f.read_chunk (frame=0, name='chunk');
datal = f.read_chunk (frame=1, name='chunk');
data2 = f.read_chunk (frame=2, name='chunk');
data3 = f.read_chunk (frame=3, name='chunk');

Tip: Each call to invokes a disk read and allocation of a new numpy array for storage. To avoid overhead,
don’tcall read_chunk () on the same chunk repeatedly. Cache the arrays instead.

32 Chapter 6. gsd python package

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

GSD Documentation, Release 1.6.0

6.1.3 gsd.hoomd module

hoomd schema reference implementation

The main package gsd. hoomd is a reference implementation of the GSD schema hoomd. It is a simple, but high
performance and memory efficient, reader and writer for the schema. See HOOMD for full examples.

e create () - Create a hoomd schema GSD file (deprecated).

* open () - Open a hoomd schema GSD file.

e HOOMDTra jectory - Read and write hoomd schema GSD files.

* Snapshot - Store the state of a single frame.
— ConfigurationData - Store configuration data in a snapshot.
— ParticleData - Store particle data in a snapshot.
— BondData - Store topology data in a snapshot.

class gsd.hoomd.BondData (M)
Store bond data chunks.

Users should not need to instantiate this class. Use the bonds, angles, dihedrals, or impropers
attribute of a Snapshot.

Instances resulting from file read operations will always store per bond quantities in numpy arrays of the defined
types. User created snapshots can provide input data as python lists, tuples, numpy arrays of different types,
etc... Such input elements will be converted to the appropriate array type by validate () which is called
when writing a frame.

Note: M varies depending on the type of bond. The same python class represents all types of bonds.

Type M
Bond 2
Angle 3
Dihedral | 4
Improper | 4

N
Number of particles in the snapshot (bonds/N, angles/N, dihedrals/N, impropers/N,
pairs/N).
Type int
types
Names of the particle types (bonds/types, angles/types, dihedrals/types, impropers/
types, pairs/types).
Type list[str]
typeid

N length array defining bond type ids (bonds/typeid, angles/typeid, dihedrals/typeid,
impropers/typeid, pairs/types).

Type numpy.ndarray[uint32, ndim=1, mode="c’]

6.1. Submodules 33

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

GSD Documentation, Release 1.6.0

group
NxM array defining tags in the particle bonds (bonds/group, angles/group, dihedrals/group,

impropers/group, pairs/group).
Type numpy.ndarray[uint32, ndim=2, mode="c’]

validate ()
Validate all attributes.

First, convert every per bond attribute to a numpy array of the proper type. Then validate that all attributes
have the correct dimensions.

Ignore any attributes that are None.

Warning: Per bond attributes that are not contiguous numpy arrays will be replaced with contiguous
numpy arrays of the appropriate type.

class gsd.hoomd.ConfigurationData
Store configuration data.

Users should not need to instantiate this class. Use the configuration attribute of a Snapshot.

step
Time step of this frame (configuration/step).

Type int

dimensions
Number of dimensions (configuration/dimensions).

Type int

box
Box dimensions (configuration/box) - [Ix, ly, 1z, Xy, Xz, yz].

Type numpy.ndarray[float, ndim=1, mode="c’]

validate ()
Validate all attributes.

First, convert every array attribute to a numpy array of the proper type. Then validate that all attributes
have the correct dimensions.

Ignore any attributes that are None.

Warning: Array attributes that are not contiguous numpy arrays will be replaced with contiguous
numpy arrays of the appropriate type.

class gsd.hoomd.ConstraintData
Store constraint data chunks.

Users should not need to instantiate this class. Use the constraints, attribute of a Snapshot.

Instances resulting from file read operations will always store per constraint quantities in numpy arrays of the
defined types. User created snapshots can provide input data as python lists, tuples, numpy arrays of different
types, etc... Such input elements will be converted to the appropriate array type by validate () which is
called when writing a frame.

N
Number of particles in the snapshot (constraints/N).

34 Chapter 6. gsd python package

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

GSD Documentation, Release 1.6.0

Type int

value
N length array defining constraint lengths (constraints/value).

Type numpy.ndarray[float32, ndim=1, mode="c’]

group
Nx2 array defining tags in the particle constraints (constraints/group).

Type numpy.ndarray[uint32, ndim=2, mode="c’]

validate ()
Validate all attributes.

First, convert every per constraint attribute to a numpy array of the proper type. Then validate that all
attributes have the correct dimensions.

Ignore any attributes that are None.

Warning: Per bond attributes that are not contiguous numpy arrays will be replaced with contiguous
numpy arrays of the appropriate type.

class gsd.hoomd.HOOMDTrajectory (file)
Read and write hoomd gsd files.

Parameters file (gsd. f1.GSDF1ile)— File to access.
Create hoomd GSD files with create ().

append (snapshot)
Append a snapshot to a hoomd gsd file.

Parameters snapshot (Snapshot) — Snapshot to append.

Write the given snapshot to the file at the current frame and increase the frame counter. Do not attempt to
write any fields that are None. For all non-None fields, scan them and see if they match the initial frame
or the default value. If the given data differs, write it out to the frame. If it is the same, do not write it out
as it can be instantiated either from the value at the initial frame or the default value.

extend (iterable)
Append each item of the iterable to the file.

Parameters iterable — An iterable object the provides Snapshot instances. This could
be another HOOMDTrajectory, a generator that modifies snapshots, or a simple list of snap-
shots.

read_frame (idx)
Read the frame at the given index from the file.

Parameters idx (int)— Frame index to read.
Returns Snapshot with the frame data

Replace any data chunks not present in the given frame with either data from frame 0, or initialize from
default values if not in frame 0. Cache frame 0 data to avoid file read overhead. Return any default data as
non-writable numpy arrays.

truncate ()
Remove all frames from the file.

6.1. Submodules 35

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

GSD Documentation, Release 1.6.0

class gsd.hoomd.ParticleData
Store particle data chunks.

Users should not need to instantiate this class. Use the particles attribute of a Snapshot.

Instances resulting from file read operations will always store per particle quantities in numpy arrays of the
defined types. User created snapshots can provide input data as python lists, tuples, numpy arrays of different
types, etc... Such input elements will be converted to the appropriate array type by validate () which is
called when writing a frame.

N
Number of particles in the snapshot (particles/N).
Type int
types
Names of the particle types (particles/types).
Type list[str]
position
Nx3 array defining particle position (particles/position).
Type numpy.ndarray[float, ndim=2, mode="c’]
orientation
Nx4 array defining particle position (particles/orientation).
Type numpy.ndarray[float, ndim=2, mode="c’]
typeid
N length array defining particle type ids (particles/typeid).
Type numpy.ndarray[uint32, ndim=1, mode="c’]
mass
N length array defining particle masses (particles/mass).
Type numpy.ndarray[float, ndim=1, mode="c’]
charge
N length array defining particle charges (particles/charge).
Type numpy.ndarray[float, ndim=1, mode="c’]
diameter
N length array defining particle diameters (particles/diameter).
Type numpy.ndarray[float, ndim=1, mode="c’]
body

N length array defining particle bodies (particles/body).
Type numpy.ndarray[int32, ndim=1, mode="c’]

moment_inertia
Nx3 array defining particle moments of inertia (particles/moment_inertia).

Type numpy.ndarray[float, ndim=2, mode="c’]

velocity
Nx3 array defining particle velocities (particles/velocity).

Type numpy.ndarray[float, ndim=2, mode="c’]

36 Chapter 6. gsd python package

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

GSD Documentation, Release 1.6.0

angmom
Nx4 array defining particle angular momenta (particles/angmom).

Type numpy.ndarray[float, ndim=2, mode="c’]

image
Nx3 array defining particle images (particles/image).

Type numpy.ndarray[int32, ndim=2, mode="c’]

validate ()
Validate all attributes.

First, convert every per particle attribute to a numpy array of the proper type. Then validate that all
attributes have the correct dimensions.

Ignore any attributes that are None.

Warning: Per particle attributes that are not contiguous numpy arrays will be replaced with contiguous
numpy arrays of the appropriate type.

class gsd.hoomd.Snapshot
Top level snapshot container.

configuration
Configuration data.

Type ConfigurationData

particles
Particle data snapshot.

Type ParticleData

bonds
Bond data snapshot.

Type BondData

angles
Angle data snapshot.

Type BondData

dihedrals
Dihedral data snapshot.

Type BondData

impropers
Improper data snapshot.

Type BondData

pairs (
py:class: BondData): Special pair interactions snapshot

state
Dictionary containing state data

Type dict

6.1. Submodules 37

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict

GSD Documentation, Release 1.6.0

gsd.

gsd.

See the HOOMD schema specification for details on entries in the state dictionary. Entries in this dict are the
chunk name without the state prefix. For example, state/hpmc/sphere/radius is stored in the dictionary
entry state['hpmc/sphere/radius'].

validate ()
Validate all contained snapshot data.

hoomd . create (name, snapshot=None)
Create a hoomd gsd file from the given snapshot.

Parameters
* name (str) — File name.

* snapshot (Snapshot) — Snapshot to write to frame 0. No frame is written if snapshot
is None.

Deprecated since version 1.2: As of version 1.2, you can create and open hoomd GSD files in the same call to
open (). create () is kept for backwards compatibility.

Danger: The file is overwritten if it already exists.

hoomd . open (name, mode="rb’)
Open a hoomd schema GSD file.

The return value of open () can be used as a context manager.
Parameters
* name (str) — File name to open.
* mode (str)— File open mode.
Returns An HOOMDTra jectory instance that accesses the file name with the given mode.

Valid values for mode:

mode| description

'rb'| Open an existing file for reading.

'rb+! Open an existing file for reading and writing. Inefficient for large files.

'wb'| Open a file for writing. Creates the file if needed, or overwrites an existing file.

'wb+[Open a file for reading and writing. Creates the file if needed, or overwrites an existing file. Inefficient
for large files.

Create a gsd file exclusively and opens it for writing. Raise an FileExistsError exception if it
already exists.

'xb+[Create a gsd file exclusively and opens it for reading and writing. Raise an FileExistsError
exception if it already exists. Inefficient for large files.

'ab'| Open an existing file for writing. Does not create or overwrite existing files.

'xb

New in version 1.2.

6.2 Package contents

The GSD main module

The main package gsd is the root package. It holds submodules and does not import them. Users import the modules
they need into their python script:

38

Chapter 6. gsd python package

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#FileExistsError
https://docs.python.org/3/library/exceptions.html#FileExistsError

GSD Documentation, Release 1.6.0

import gsd.fl
f = gsd.f1.GSDFile('filename', 'rb'");

gsd.__version___

GSD software version number. This is the version number of the software package as a whole, not the file layer

version it reads/writes.

Type str

6.3 Logging

All python modules in GSD use the python standard library module 1ogging to log events. Use this module to

control the verbosity and output destination:

import logging
logging.basicConfig(level=logging.INFO)

See also:

Module 1ogging Documenation of the 10gging standard module.

6.3. Logging

39

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/logging.html#module-logging
https://docs.python.org/3/library/logging.html#module-logging
https://docs.python.org/3/library/logging.html#module-logging

GSD Documentation, Release 1.6.0

40 Chapter 6. gsd python package

CHAPTER /

C API

The GSD C API consists of a single header and source file (less than 1k lines of code). It does not build as a shared
library. Instead, it is intended that developers simply drop the implementation into any package that needs it.

7.1 Functions

int gsd_create (const char *fname, const char *application, const char *schema, uint32_t schema_version)
Create an empty gsd file in a file of the given name. Overwrite any existing file at that location. The generated
gsd file is not opened. Call gsd_open() to open it for writing.

Parameters
* fname — File name
* application — Generating application name (truncated to 63 chars)
* schema — Schema name for data to be written in this GSD file (truncated to 63 chars)

* schema_version - Version of the scheme data to be written (make with
gsd_make_version())

Returns 0 on success, -1 on a file IO failure - see errno for details

int gsd_open (struct gsd_handle_t* handle, const char *fname, const gsd_open_flag flags)
Open a GSD file and populates the handle for use by later API calls.

Parameters
* handle — Handle to open.
* fname - File name to open.

* flags - Either GSD_OPEN_READWRITE, GSD_OPEN_READONLY, or
GSD_OPEN_APPEND.

Prefer the modes GSD_OPEN_APPEND for writing and GSD_OPEN_READONLY for reading. These modes are
optimized to only load as much of the index as needed. GSD_OPEN_READWRITE needs to store the entire
index in memory: in files with millions of chunks, this can add up to GiB.

41

GSD Documentation, Release 1.6.0

Returns
0 on success. Negative value on failure:
e -1: IO error (check errno)
e -2: Not a GSD file
* -3: Invalid GSD file version
e -4: Corrupt file

* -5: Unable to allocate memory

int gsd_create_and_open (struct gsd_handle_t* handle, const char *fname, const char *application, const

char *schema, uint32_t schema_version, const gsd_open_flag flags, int exclu-

sive_create)
Create an empty gsd file in a file of the given name. Overwrite any existing file at that location. Open the

generated gsd file in handle.
Parameters
* handle — Handle to open
* fname — File name
* application — Generating application name (truncated to 63 chars)
¢ schema — Schema name for data to be written in this GSD file (truncated to 63 chars)

* schema_version - Version of the scheme data to be written (make with
gsd_make_version())

* flags — Either GSD_OPEN_READWRITE, or GSD_OPEN_APPEND

* exclusive_create - Set to non-zero to force exclusive creation of the file
Returns

0 on success. Negative value on failure:

¢ -1: IO error (check errno)

» -2: Not a GSD file

e -3: Invalid GSD file version

* -4: Corrupt file

¢ -5: Unable to allocate memory

* -6: Invalid argument

int gsd_truncate (gsd_handle_t* handle)

Truncate a GSD file opened by gsd_open ().

After truncating, a file will have no frames and no data chunks. The file size will be that of a newly created gsd
file. The application, schema, and schema version metadata will be kept. Truncate does not close and reopen
the file, so it is suitable for writing restart files on Lustre file systems without any metadata access.

Parameters
* handle — Handle to truncate.
Returns
0 on success. Negative value on failure:

¢ -1: IO error (check errno)

42

Chapter 7. C API

GSD Documentation, Release 1.6.0

» -2: Not a GSD file

* -3: Invalid GSD file version

* -4: Corrupt file

* -5: Unable to allocate memory

int gsd_close (gsd_handle_t* handle)
Close a GSD file opened by gsd open(). Call gsd end frame () after the last call to
gsd_write_ chunk () before closing the file.

Parameters

¢ handle — Handle to close.

Warning: Do not write chunks to the file with gsd_write_chunk() and then immediately close the file with
gsd_close (). This will result in data loss. Data chunks written by gsd _write chunk () are not
updated in the index until gsd_end frame () is called. This is by design to prevent partial frames in
files.

Returns 0 on success, -1 on a file IO failure - see errno for details, and -2 on invalid input

int gsd_end_frame (gsd_handle_t* handle)
Move on to the next frame after writing 1 or more chunks with gsd_write_ chunk (). Increase the frame
counter by 1 and flush the cached index to disk.

Parameters
* handle — Handle to an open GSD file.
Returns 0 on success, -1 on a file IO failure - see errno for details, and -2 on invalid input

int gsd_write_chunk (struct gsd_handle_t* handle, const char *name, gsd_type type, uint64_t N,

uint32_t M, uint8_t flags, const void *data)
Write a data chunk to the current frame. The chunk name must be unique within each frame. The given data

chunk is written to the end of the file and its location is updated in the in-memory index. The data pointer must
be allocated and contain at least contains at leastN + M * gsd_sizeof_type (type) bytes.

Parameters
* handle - Handle to an open GSD file.
¢ name — Name of the data chunk (truncated to 63 chars).
* type — type ID that identifies the type of data in data.
* N — Number of rows in the data.
* M — Number of columns in the data.
* flags — Unused, set to 0
* data - Data buffer.
Returns 0 on success, -1 on a file IO failure - see errno for details, and -2 on invalid input

const struct gsd_index_entry_t* gsd_£ind_chunk (struct gsd_handle_t* handle, uint64_t frame, const

char *name)
Find a chunk in the GSD file. The found entry contains size and type metadata and can be passed to

gsd_read_chunk () to read the data.

Parameters

7.1. Functions 43

GSD Documentation, Release 1.6.0

* handle — Handle to an open GSD file
* frame — Frame to look for chunk
* name — Name of the chunk to find
Returns A pointer to the found chunk, or NULL if not found.

int gsd_read_chunk (gsd_handle_t* handle, void* data, const gsd_index_entry_t* chunk)
Read a chunk from the GSD file. The index entry must first be found by gsd_find chunk (). data must
point to an allocated buffer with atleastN « M * gsd_sizeof_type (type) bytes.

Parameters
* handle — Handle to an open GSD file
* data - Data buffer to read into
* chunk — Chunk to read
Returns
0 on success
* -1 on a file IO failure - see errno for details
* -2 on invalid input
* -3 on invalid file data

uint64_t gsd_get_nframes (gsd_handle_t* handle)
Get the number of frames in the GSD file.

Parameters
* handle — Handle to an open GSD file.
Returns The number of frames in the file, or O on error.

size_t gsd_sizeof_type (gsd_type type)
Query size of a GSD type ID.

Parameters
* type — Type ID to query
Returns Size of the given type, or 1 for an unknown type ID.

uint32_t gsd_make_version (unsigned int major, unsigned int minor)
Specify a version number.

Parameters
* major — major version.
* minor — minor version.

Returns a packed version number aaaa.bbbb suitable for storing in a gsd file version entry.

7.2 Constants

7.2.1 Data types

gsd_type GSD_TYPE_UINTS8
Type ID: 8-bit unsigned integer.

44 Chapter 7. C API

GSD Documentation, Release 1.6.0

gsd_type GSD_TYPE_UINT16
Type ID: 16-bit unsigned integer.

gsd_type GSD_TYPE_UINT32
Type ID: 32-bit unsigned integer.

gsd_type GSD_TYPE_UINT64
Type ID: 64-bit unsigned integer.

gsd_type GSD_TYPE_INTS8
Type ID: 8-bit signed integer.

gsd_type GSD_TYPE_INT16
Type ID: 16-bit signed integer.

gsd_type GSD_TYPE_INT32
Type ID: 32-bit signed integer.

gsd_type GSD_TYPE_INT64
Type ID: 64-bit signed integer.

gsd_type GSD_TYPE_FLOAT
Type ID: 32-bit single precision floating point.

gsd_type GSD_TYPE_DOUBLE

Type ID: 64-bit double precision floating point.

7.2.2 Open flags
gsd_open_flag GSD_OPEN_READWRITE
Open file in read/write mode.

gsd_open_flag GSD_OPEN_READONLY
Open file in read only mode.

gsd_open_flag GSD_OPEN_APPEND
Open file in append only mode.

7.3 Data structures

gsd_handle_t

Handle to an open GSD file. All members are read-only. Only public members are documented here.

gsd_header_t header

File header. Use this field to access the header of the GSD file.

int64_t £ile_size
Size of the open file in bytes.

gsd_open_flag open_£flags
Flags used to open the file.

gsd_header_t

GSD file header. Access version, application, and schema information.

uint32_t gsd_version

File format version: Oxaaaabbbb => aaaa.bbbb

char application[64]

Name of the application that wrote the file.

7.3. Data structures

45

GSD Documentation, Release 1.6.0

char schema[64]
Name of schema defining the stored data.

uint32_t schema_version
Schema version: Oxaaaabbbb => aaaa.bbbb

gsd_index_entry t
Entry for a single data chunk in the GSD file.

uint64_t £rame
Frame index of the chunk.

uint64_t N
Number of rows in the chunk data.

uintS_tM
Number of columns in the chunk.

uint8_t type
Data type of the chunk. See Data types.

gsd_open_flag
Enum defining the file open flag. Vaild values are GSD_OPEN_READWRITE, GSD_OPEN_READONLY, and
GSD_OPEN_APPEND.

gsd_type
Enum defining the file type of the GSD data chunk.

uint8_t
8-bit unsigned integer (defined by C compiler)

uint32_t
32-bit unsigned integer (defined by C compiler)

uint64_t
64-bit unsigned integer (defined by C compiler)

int64_t
64-bit signed integer (defined by C compiler)

46 Chapter 7. C API

CHAPTER 8

Specification

8.1 File layer

Version: 1.0

General simulation data (GSD) file layer design and rationale. These use cases and design specifications define the
low level GSD file format.

8.1.1 Use-cases

* capabilities

* queries

efficiently store many frames of data from simulation runs

high performance file read and write

support arbitrary chunks of data in each frame (position, orientation, type, etc...)
variable number of named chunks in each frame

variable size of chunks in each frame

each chunk identifies data type

common use cases: NxM arrays in double, float, int, char types.

generic use case: binary blob of N bytes

easy to integrate into other tools

append frames to an existing file with a monotonically increasing frame number

resilient to job kills

number of frames

is named chunk present in frame i

47

GSD Documentation, Release 1.6.0

— type and size of named chunk in frame i
— read data for named chunk in frame i
— read only a portion of a chunk
* writes
— write data to named chunk in the current frame
— write a single data chunk from multiple MPI ranks
— end frame and commit to disk

These capabilities should enable a simple and rich higher level schema for storing particle and other types of data. The
schema determine which named chunks exist in a given file and what they mean.

8.1.2 Non use-cases

These capabilities are use-cases that GSD does not support, by design.
1. Modify data in the file: GSD is designed to capture simulation data, that raw data should not be modifiable.
2. Add chunks to frames in the middle of a file: See (1).
3. Transparent conversion between float and double: Callers must take care of this.

4. Transparent compression - this gets in the way of parallel I/O. Disk space is cheap.

8.1.3 Specifications

Support:
* Files as large as the underlying filesystem allows (up to 64-bit address limits)
* Data chunk names up to 63 characters
» Reference up to 65536 different chunk names within a file
* Application and scheme names up to 63 characters
 Store as many frames as can fit in a file up to file size limits
 Data chunks up to (64-bit) x (32-bit) elements

The limits on only 16-bit name indices and 32-bit column indices are to keep the size of each index entry as small
as possible to avoid wasting space in the file index. The primary use cases in mind for column indices are Nx3 and
Nx4 arrays for position and quaternion values. Schemas that wish to store larger truly n-dimensional arrays can store
their dimensionality in metadata in another chunk and store as an Nx1 index entry. Or use a file format more suited to
N-dimensional arrays such as HDF5.

8.1.4 Dependencies

The file layer is implemented in C (not C++) with no dependencies to enable trivial installation and incorporation into
existing projects. A single header and C file completely implement the entire file layer in a few hundred lines of code.
Python based projects that need only read access can use gsd. pygsd, a pure python gsd reader implementation.

A python interface to the file layer allows reference implementations and convenience methods for schemas. Most
non-technical users of GSD will probably use these reference implementations directly in their scripts.

48 Chapter 8. Specification

GSD Documentation, Release 1.6.0

Boost will not be used so the python API will work on the widest possible number of systems. Instead, the low level
C library will be wrapped with cython. A python setup.py file will provide simple installation on as many systems as
possible. Cython c++ output is checked in to the repository so users do not even need cython as a dependency.

8.1.5 File format

There are four types of data blocks in a GSD file.
1. Header block

* QOverall header for the entire file, contains the magic cookie, a format version, the name of the gener-
ating application, the schema name, and its version. Some bytes in the header are reserved for future
use. Header size: 256 bytes. The header block also includes a pointer to the index, the number of
allocated entries, the number of used entries in the index, a pointer to the name list, the size of the
name list, and the number of entries used in the name list.

* The header is the first 256 bytes in the file.
2. Index block
¢ Index the frame data, size information, location, name id, etc. ..

* The index contains space for any number of index_entry structs, the header indicates how many slots
are used.

e When the index fills up, a new index block is allocated at the end of the file with more space and all
current index entries are rewritten there.

* Index entry size: 32 bytes
3. Name list

* List of string names used by index entries.

* Each name is a name_entry struct, which holds up to 63 characters.

* The header stores the total number of names available in the list and the number of name slots used.
4. Data chunk

* Raw binary data stored for the named frame data blocks.

Header index, and name blocks are stored in memory as C structs (or arrays of C structs) and written to disk in whole
chunks.

Header block

This is the header block:

struct gsd_header
{
uint64_t magic;
uint64_t index_location;
uint64_t index_allocated_entries;
uint64_t namelist_location;
uint64_t namelist_allocated_entries;
uint32_t schema_version;
uint32_t gsd_version;
char application[64];
char schema[64];

(continues on next page)

8.1. File layer 49

GSD Documentation, Release 1.6.0

(continued from previous page)

char reserved[80];
}i

* magic is the magic number identifying this as a GSD file (0x65DF65DF65DF 65DF)

* gsd_version is the version number of the gsd file layer (Oxaaaabbbb => aaaa.bbbb)
* application is the name of the generating application

* schema is the name of the schema for data in this gsd file

¢ schema_version is the version of the schema (0xaaaabbbb => aaaa.bbbb)

index_location is the file location f the index block

e index_allocated_entries is the number of entries allocated in the index block

e namelist_location is the file location of the namelist block

e namelist_allocated_entries is the number of entries allocated in the namelist block
* reserved are bytes saved for future use

This structure is ordered so that all known compilers at the time of writing produced a tightly packed 256-byte header.
Some compilers may required non-standard packing attributes or pragmas to enforce this.

Index block

An Index block is made of a number of line items that store a pointer to a single data chunk:

struct gsd_index_entry
{
uint64_t frame;
uint64_t N;
int64_t location;
uint32_t M;
uintl6_t id;
uint8_t type;
uint8_t flags;
}i

» frame is the index of the frame this chunk belongs to

* N and M define the dimensions of the data matrix (NxM in C ordering with M as the fast index).
* location is the location of the data chunk in the file

e idis the index of the name of this entry in the namelist.

e type is the type of the data (char, int, float, double) indicated by index values

* flags is reserved for future use (it rounds the struct size out to 32 bytes).

Many gsd_index_entry_t structs are combined into one index block. They are stored densely packed and in the
same order as the corresponding data chunks are written to the file.

This structure is ordered so that all known compilers at the time of writing produced a tightly packed 32-byte entry.
Some compilers may required non-standard packing attributes or pragmas to enforce this.

The frame index must monotonically increase from one index entry to the next. The GSD API ensures this.

50 Chapter 8. Specification

GSD Documentation, Release 1.6.0

Namelist block

An namelist block is made of a number of line items that store the string name of a data chunk entry:

struct gsd_namelist_entry

{

char name[64];
}i

The id field of the index entry refers to the index of the name within the namelist entry.

Data block

A data block is just raw data bytes on the disk. For a given index entry entry, the data starts at location entry.
location andis the next entry.N % entry.M * gsd_sizeof_type (entry.type) bytes.

8.1.6 API and implementation thoughts
The C-level API is object oriented through the use of the handle structure. In the handle, the API will store cached
index data in memory and so forth. A pointer to the handle will be passed in to every API call.

* int gsd_create () : Create a GSD file on disk, overwriting any existing file.

* gsd_handle_tx gsd_open () : Open a GSD file and return an allocated handle.

e int gsd_close () : Close a GSD file and free all memory associated with it.

* int gsd_end_frame () [Complete writing the current frame and flush it to disk. This automatically] starts
a new frame.

e int gsd_write_chunk () : Write a chunk out to the current frame
e uint64_t gsd_get_nframes () : Get the number of frames written to the file

e int gsd_index_entry_tx gsd_find_chunk () : Find a chunk with the given name in the given
frame.

* int gsd_read_chunk() : Read data from a given chunk (must find the chunk first with
gsd_find_chunk).

gsd_open will open the file, read all of the index blocks in to memory, and determine some things it will need later.
The index block is stored in memory to facilitate fast lookup of frames and named data chunks in frames.

gsd_end_ frame increments the current frame counter and writes the current index block to disk.

gsd_write_chunk seeks to the end of the file and writes out the chunk. Then it updates the cached index block
with a new entry. If the current index block is full, it will create a new, larger one at the end of the file. Normally,
write_chunk only updates the data in the index cache. Only a call to gsd_end_ frame writes out the updated
index. This facilitates contiguous writes and helps ensure that all frame data blocks are completely written in a self-
consistent way.

8.1.7 Failure modes

GSD is resistant to failures. The code aggressively checks for failures in memory allocations, and verifies that
write () and read () return the correct number of bytes after each call. Any time an error condition hits, the
current function call aborts.

8.1. File layer 51

GSD Documentation, Release 1.6.0

GSD has a protections against invalid data in files. A specially constructed file may still be able to cause problems,
but at GSD tries to stop if corrupt data is present in a variety of ways.

* The header has a magic number. If it is invalid, GSD reports an error on open. This guards against corrupt file
headers.

* Before allocating memory for the index block, GSD verifies that the index block is contained within the file.

* When writing chunks, data is appended to the end of the file and the index is updated in memory. After all
chunks for the current frame are written, the user calls gsd_end_frame () which writes out the updated
index and header. This way, if the process is killed in the middle of writing out a frame, the index will not
contain entries for the partially written data. Such a file could still be appended to safely.

* If an index entry lists a size that goes past the end of the file, read_chunk will return an error.

8.2 HOOMD Schema

HOOMD-blue supports a wide variety of per particle attributes and properties. Particles, bonds, and types can be
dynamically added and removed during simulation runs. The hoomd schema can handle all of these situations in a
reasonably space efficient and high performance manner. It is also backwards compatible with previous versions of
itself, as we only add new additional data chunks in new versions and do not change the interpretation of the existing
data chunks. Any newer reader will initialize new data chunks with default values when they are not present in an
older version file.

Schema name hoomd

Schema version 1.2

8.2.1 Use-cases

There are a few problems with XML, DCD, and other dump files that the GSD schema hoomd solves.
1. Every frame of GSD output is viable for restart from init.read_gsd

No need for a separate topology file - everything is in one . gsd file.

Support varying numbers of particles, bonds, etc. ..

Support varying attributes (type, mass, etc...)

Support orientation, angular momentum, and other fields that DCD cannot.

Simple interface for dump - limited number of options that produce valid files

Binary format on disk

® NS A » N

High performance file read and write

8.2.2 Data chunks

Each frame the hoomd schema may contain one or more data chunks. The layout and names of the chunks closely
match that of the binary snapshot API in HOOMD-blue itself (at least at the time of inception). Data chunks are
organized in categories. These categories have no meaning in the hoomd schema specification, and are simply an
organizational tool. Some file writers may implement options that act on categories (i.e. write attributes out to every
frame, or just frame 0).

Values are well defined for all fields at all frames. When a data chunk is present in frame i, it defines the values for
the frame. When it is not present, the data chunk of the same name at frame O defines the values for frame i (when

52 Chapter 8. Specification

GSD Documentation, Release 1.6.0

N is equal between the frames). If the data chunk is not present in frame 0, or N differs between frames, values are
assumed default. Default values allow files sizes to remain small. For example, a simulation with point particles where
orientation is always (1,0,0,0) would not write any orientation chunk to the file.

N may be zero. When N is zero, an index entry may be written for a data chunk with no actual data written to the file
for that chunk.

Name Category | Type | Size Default | Units
Configuration

configuration/step uint64 | 1x1 0 number
configuration/dimensions uint8 1x1 3 number
configuration/box float 6x1 varies
Particle data

particles/N attribute uint32 | 1x1 0 number
particles/types attribute int8 NTxM | [‘A’] UTF-8
particles/typeid attribute uint32 | Nx1 0 number
particles/mass attribute float Nx1 1.0 mass
particles/charge attribute float Nx1 0.0 charge
particles/diameter attribute float Nx1 1.0 length
particles/body attribute int32 | NxlI -1 number
particles/moment_inertia | attribute float Nx3 0,0,0 mass * length”2
particles/position property float Nx3 0,0,0 length
particles/orientation property float Nx4 1,0,0,0 | unit quaternion
particles/velocity momentum | float Nx3 0,0,0 length/time
particles/angmom momentum | float Nx4 0,0,0,0 quaternion
particles/image momentum | int32 Nx3 0,0,0 number
Bond data

bonds/N topology uint32 | 1x1 0 number
bonds/types topology int8 NTxM UTF-8
bonds/typeid topology uint32 | Nxl1 0 number
bonds/group topology uint32 | Nx2 0,0 number
Angle data

angles/N topology uint32 | 1x1 0 number
angles/types topology int8 NTxM UTEF-8
angles/typeid topology uint32 | NxlI 0 number
angles/group topology uint32 | Nx3 0,0,0 number
Dihedral data

dihedrals/N topology uint32 | 1x1 0 number
dihedrals/types topology int8 NTxM UTF-8
dihedrals/typeid topology uint32 | Nx1 0 number
dihedrals/group topology uint32 | Nx4 0,0,0,0 number
Improper data

impropers/N topology uint32 | 1x1 0 number
impropers/types topology int8 NTxM UTEF-8
impropers/typeid topology uint32 | Nx1 0 number
impropers/group topology uint32 | Nx4 0,0,0,0 | number
Constraint data

constraints/N topology uint32 | 1x1 0 number
constraints/value topology float Nx1 0 length
constraints/group topology uint32 | Nx2 0,0 number
Special pairs data

pairs/N topology uint32 | 1x1 0 number

Continued on next page

8.2. HOOMD Schema 53

GSD Documentation, Release 1.6.0

Table 1 — continued from previous page

Name Category | Type | Size Default | Units
pairs/types topology int8 NTxM utf-8
pairs/typeid topology uint32 | Nxl1 0 number
pairs/group topology uint32 | Nx2 0,0 number

8.2.3 Configuration

configuration/step
Type uint64
Size 1x1
Default 0
Units number
Simulation time step.
configuration/dimensions
Type uint8
Size 1x1
Default 3
Units number
Number of dimensions in the simulation. Must be 2 or 3.
configuration/box
Type float
Size 6x1
Default [1,1,1,0,0,0]
Units varies

Simulation box. Each array element defines a different box property. See the hoomd documentation for a full
description on how these box parameters map to a triclinic geometry.

* box[0:3]: (I3,1,,1,) the box length in each direction, in length units

* box[3:]: (zy,xz,yz) the tilt factors, unitless values

8.2.4 Particle data

Within a single frame, the number of particles N and NT are fixed for all chunks. N and NT may vary from one frame
to the next. All values are stored in hoomd native units.

Attributes

particles/N
Type uint32

Size 1x1

54 Chapter 8. Specification

GSD Documentation, Release 1.6.0

Default 0
Units number
Define N, the number of particles, for all data chunks particles/*.

particles/types

Type int8

Size NTxM

Default [‘A’]

Units UTF-8

Implicitly define NT, the number of particle types, for all data chunks particles/*. M must be large enough
to accommodate each type name as a null terminated UTF-8 character string. Row i of the 2D matrix is the type
name for particle type i.

particles/typeid
Type uint32
Size Nx1
Default 0
Units number

Store the type id of each particle. All id’s must be less than NT. A particle with type id has a type name matching
the corresponding row in particles/types.

particles/mass
Type float (32-bit)
Size Nx1
Default 1.0
Units mass
Store the mass of each particle.
particles/charge
Type float (32-bit)
Size Nx1
Default 0.0
Units charge
Store the charge of each particle.
particles/diameter
Type float (32-bit)
Size Nx1
Default 1.0
Units length
Store the diameter of each particle.

particles/body

8.2. HOOMD Schema 55

GSD Documentation, Release 1.6.0

Type int32
Size NxI

Default -1
Units number

Store the composite body associated with each particle. The value -1 indicates no body. The body field may be
left out of input files, as hoomd will create the needed constituent particles.

particles/moment_inertia
Type float (32-bit)
Size Nx3
Default 0,0,0
Units mass * length"2

Store the moment_inertia of each particle (154, Iyy, .-). This inertia tensor is diagonal in the body frame of
the particle. The default value is for point particles.

Properties

particles/position
Type float (32-bit)
Size Nx3
Default 0,0,0
Units length
Store the position of each particle (x, y, z).

All particles in the simulation are referenced by a tag. The position data chunk (and all other per particle data
chunks) list particles in tag order. The first particle listed has tag 0, the second has tag 1, ..., and the last has tag
N-1 where N is the number of particles in the simulation.

All particles must be inside the box:

cx> -1, /24 (xz—ay-yz)-z+ay-yandx <l /2+ (xz —ay-yz) - z+ay-y

cy>—l,/2+yz-zandy <l,/24+yz- 2

e z>—l,/2and z < [,/2

particles/orientation

Type float (32-bit)
Size Nx4
Default 1,0,0,0
Units unit quaternion

Store the orientation of each particle. In scalar + vector notation, this is (r, a, Gy, a,), where the quaternion is

g =7+ azi + ayj + a,k. A unit quaternion has the property: \/1“2 +a2 +al+aZ=1

56 Chapter 8. Specification

GSD Documentation, Release 1.6.0

Momenta

particles/velocity
Type float (32-bit)
Size Nx3
Default 0,0,0
Units length/time
Store the velocity of each particle (vg, vy, vs).
particles/angmom
Type float (32-bit)
Size Nx4
Default 0,0,0,0
Units quaternion

Store the angular momentum of each particle as a quaternion. See the HOOMD documentation for information
on how to convert to a vector representation.

particles/image
Type int32
Size Nx3
Default 0,0,0
Units number

Store the number of times each particle has wrapped around the box (i, iy, %,). In constant volume simulations,
the unwrapped position in the particle’s full trajectory is

* Xy =T iyl Yy iy lytaz-i -l
C Yy =Y iy ly Fyz-iz ki,

c zy =2+,

8.2.5 Topology

bonds/N

Type uint32

Size 1x1

Default 0

Units number

Define N, the number of bonds, for all data chunks bonds/ .

bonds/types

Type int8

Size NTxM

Default empty

8.2. HOOMD Schema 57

GSD Documentation, Release 1.6.0

Units UTF-8

Implicitly define NT, the number of bond types, for all data chunks bonds/*. M must be large enough to
accommodate each type name as a null terminated UTF-8 character string. Row i of the 2D matrix is the type
name for bond type i. By default, there are 0 bond types.

bonds/typeid
Type uint32
Size Nx1
Default 0
Units number

Store the type id of each bond. All id’s must be less than N7. A bond with type id has a type name matching the
corresponding row in bonds/types.

bonds/group
Type uint32
Size Nx2
Default 0,0
Units number
Store the particle tags in each bond.
angles/N
Type uint32
Size 1x1
Default 0
Units number
Define N, the number of angles, for all data chunks angles/ *.
angles/types
Type int8
Size NTxM
Default empty
Units UTF-8

Implicitly define N7, the number of angle types, for all data chunks angles/*. M must be large enough to
accommodate each type name as a null terminated UTF-8 character string. Row i of the 2D matrix is the type
name for angle type i. By default, there are 0 angle types.

angles/typeid
Type uint32
Size Nx1
Default 0
Units number

Store the type id of each angle. All id’s must be less than NT. A angle with type id has a type name matching
the corresponding row in angles/types.

58 Chapter 8. Specification

GSD Documentation, Release 1.6.0

angles/group
Type uint32
Size Nx2
Default 0,0
Units number
Store the particle tags in each angle.
dihedrals/N
Type uint32
Size 1x1
Default 0
Units number
Define N, the number of dihedrals, for all data chunks dihedrals/ *.
dihedrals/types
Type int8
Size NTxM
Default empty
Units UTF-8

Implicitly define NT, the number of dihedral types, for all data chunks dihedrals/ . M must be large enough
to accommodate each type name as a null terminated UTF-8 character string. Row i of the 2D matrix is the type
name for dihedral type i. By default, there are O dihedral types.

dihedrals/typeid
Type uint32
Size Nx1
Default 0
Units number

Store the type id of each dihedral. All id’s must be less than N7T. A dihedral with type id has a type name
matching the corresponding row in dihedrals/types.

dihedrals/group

Type uint32

Size Nx2

Default 0,0

Units number

Store the particle tags in each dihedral.

impropers/N

Type uint32

Size 1x1

Default 0

8.2. HOOMD Schema 59

GSD Documentation, Release 1.6.0

Units number
Define N, the number of impropers, for all data chunks impropers/*.
impropers/types
Type int8
Size NTxM
Default empty
Units UTF-8

Implicitly define NT, the number of improper types, for all data chunks impropers/x. M must be large
enough to accommodate each type name as a null terminated UTF-8 character string. Row i of the 2D matrix is
the type name for improper type i. By default, there are O improper types.

impropers/typeid
Type uint32
Size NxI
Default 0
Units number

Store the type id of each improper. All id’s must be less than N7. A improper with type id has a type name
matching the corresponding row in impropers/types.

impropers/group
Type uint32
Size Nx2
Default 0,0
Units number
Store the particle tags in each improper.
constraints/N
Type uint32
Size 1x1
Default 0
Units number
Define N, the number of constraints, for all data chunks constraints/x.
constraints/value
Type float
Size Nx1
Default 0
Units length
Store the distance of each constraint. Each constraint defines a fixed distance between two particles.
constraints/group

Type uint32

60 Chapter 8. Specification

GSD Documentation, Release 1.6.0

Size Nx2
Default 0,0
Units number
Store the particle tags in each constraint.
pairs/N
Type uint32
Size 1x1
Default 0
Units number
Define N, the number of special pair interactions, for all data chunks pairs/«.
New in version 1.1.
pairs/types
Type int8
Size NTxM
Default empty
Units UTF-8

Implicitly define NT, the number of special pair types, for all data chunks pairs/+. M must be large enough
to accommodate each type name as a null terminated UTF-8 character string. Row i of the 2D matrix is the type
name for particle type i. By default, there are O special pair types.

New in version 1.1.
pairs/typeid
Type uint32
Size Nx1
Default 0
Units number

Store the type id of each special pair interaction. All id’s must be less than NT. A pair with type id has a type
name matching the corresponding row in pairs/types.

New in version 1.1.
pairs/group
Type uint32
Size Nx2
Default 0,0
Units number
Store the particle tags in each special pair interaction.

New in version 1.1.

8.2. HOOMD Schema 61

GSD Documentation, Release 1.6.0

8.2.6 State data

HOOMD stores auxiliary state information in state/ data chunks. Auxiliary state encompasses internal state to
any integrator, updater, or other class that is not part of the particle system state but is also not a fixed parameter. For
example, the internal degrees of freedom in integrator. Auxiliary state is useful when restarting simulations.

HOOMD only stores state in GSD files when requested explicitly by the user. Only a few of the documented state data
chunks will be present in any GSD file and not all state chunks are valid. Thus, state data chunks do not have default
values. If a chunk is not present in the file, that state does not have a well-defined value.

Name Type Size Units
HPMC integrator state

state/hpmc/integrate/d double | 1x1 length
state/hpmc/integrate/a double | 1x1 number
state/hpmc/sphere/radius float NTx1 length
state/hpmc/ellipsoid/a float NTx1 length
state/hpmc/ellipsoid/b float NTx1 length
state/hpmc/ellipsoid/c float NTx1 length
state/hpmc/convex_polyhedron/N uint32 | NTx1 number
state/hpmc/convex_polyhedron/vertices float sum(N)x3 | length
state/hpmc/convex_spheropolyhedron/N uint32 | NTx1 number
state/hpmc/convex_spheropolyhedron/vertices float sum(N)x3 | length
state/hpmc/convex_spheropolyhedron/sweep_radius | float NTx1 length
state/hpmc/convex_polygon/N uint32 | NTx1 number
state/hpmc/convex_polygon/vertices float sum(N)x2 | length
state/hpmc/convex_spheropolygon/N uint32 | NTx1 number
state/hpmc/convex_spheropolygon/vertices float sum(N)x2 | length
state/hpmc/convex_spheropolygon/sweep_radius float NTx1 length
state/hpmc/simple_polygon/N uint32 | NTx1 number
state/hpmc/simple _polygon/vertices float sum(N)x2 | length

HPMC integrator state

NT is the number of particle types.
state/hpmc/integrate/d
Type double
Size 1x1
Units length
d is the maximum trial move displacement.
New in version 1.2.
state/hpmc/integrate/a
Type double
Size 1x1
Units number
a is the size of the maximum rotation move.

New in version 1.2.

62 Chapter 8. Specification

GSD Documentation, Release 1.6.0

state/hpmc/sphere/radius
Type float
Size NTx1
Units length
Sphere radius for each particle type.
New in version 1.2.
state/hpmc/ellipsoid/a
Type float
Size NTx1
Units length
Size of the first ellipsoid semi-axis for each particle type.
New in version 1.2.
state/hpmc/ellipsoid/b
Type float
Size NTx1
Units length

Size of the second ellipsoid semi-axis for each particle type.

New in version 1.2.
state/hpmc/ellipsoid/c
Type float
Size NTx1
Units length

Size of the third ellipsoid semi-axis for each particle type.

New in version 1.2.
state/hpmc/convex_polyhedron/N
Type uint32
Size NTx1
Units number
Number of vertices defined for each type.
New in version 1.2.
state/hpmc/convex_polyhedron/vertices
Type float
Size sum(N)x3
Units length

8.2. HOOMD Schema

63

GSD Documentation, Release 1.6.0

Position of the vertices in the shape for all types. The shape for type O is the first N[0] vertices, the shape for
type 1 is the next N[1] vertices, and so on. ..

New in version 1.2.
state/hpmc/convex_spheropolyhedron/N
Type uint32
Size NTxI
Units number
Number of vertices defined for each type.
New in version 1.2.
state/hpmc/convex_spheropolyhedron/vertices
Type float
Size sum(N)x3
Units length

Position of the vertices in the shape for all types. The shape for type O is the first N[0] vertices, the shape for
type 1 is the next N[1] vertices, and so on. ..

New in version 1.2.
state/hpmc/convex_spheropolyhedron/sweep_radius
Type float
Size NTx1
Units length
Sweep radius for each type.
New in version 1.2.
state/hpmc/convex_polygon/N
Type uint32
Size NTx1
Units number
Number of vertices defined for each type.
New in version 1.2.
state/hpmc/convex_polygon/vertices
Type float
Size sum(N)x2
Units length

Position of the vertices in the shape for all types. The shape for type O is the first N[0] vertices, the shape for
type 1 is the next N[1] vertices, and so on. ..

New in version 1.2.
state/hpmec/convex_spheropolygon/N
Type uint32

64 Chapter 8. Specification

GSD Documentation, Release 1.6.0

Size NTxI
Units number
Number of vertices defined for each type.
New in version 1.2.
state/hpmc/convex_spheropolygon/vertices
Type float
Size sum(N)x2
Units length

Position of the vertices in the shape for all types. The shape for type O is the first N[O] vertices, the shape for
type 1 is the next N[1] vertices, and so on...

New in version 1.2.
state/hpmc/convex_spheropolygon/sweep_radius
Type float
Size NTx1
Units length
Sweep radius for each type.
New in version 1.2.
state/hpmc/simple_polygon/N
Type uint32
Size NTx1
Units number
Number of vertices defined for each type.
New in version 1.2.
state/hpmc/simple_polygon/vertices
Type float
Size sum(N)x2
Units length

Position of the vertices in the shape for all types. The shape for type O is the first N[0] vertices, the shape for
type 1 is the next N[1] vertices, and so on. ..

New in version 1.2.

8.2. HOOMD Schema 65

GSD Documentation, Release 1.6.0

66 Chapter 8. Specification

CHAPTER 9

Scripts

9.1 hoomdxml2gsd.py

hoomdxml2gsd. py Converts an HOOMD-blue formated XML file to a hoomd schema GSD file.
usage hoomd2xmlgsd.py input output

Example:

$ hoomdxml2gsd.py init.xml init.gsd

input
Input hoomd XML file.

output
Output gsd file.

67

GSD Documentation, Release 1.6.0

68 Chapter 9. Scripts

cHAaPTER 10

Benchmarks

The benchmark script scripts/benchmark-hoomd. py runs a suite of I/O benchmarks that measure the time it
takes to write a file, read frames sequentially, and read frames randomly. This script only runs on linux and requires
that the user have no-password sudo access (set this only temporarily). It flushes filesystem buffers and clears the
cache to provide accurate timings. It is representative of typical use cases, storing position and orientation in a hoomd
schema GSD file at each frame. The benchmark runs at fixed file sizes with varying N (and varying number of frames)
in order to test small block and large block I/O.

10.1 SSD

Samsung SSD 840 EVO 120GB

Size N Open (ms) | Write (MB/s) | Read (MB/s) | Random (MB/s) | Random (ms)
128 MiB | 3272 2.063 45.23 64.77 50.13 0.545
128 MiB | 12872 1.091 175 304.1 226.3 1.93
128 MiB | 102472 | 15.56 177.7 366.2 463.8 60.4
1 GiB 3272 3.119 54.15 73.57 35.79 0.764
1 GiB 12872 1.703 227 305.2 188.3 2.32
1 GiB 102472 | 8.414 175.8 425.5 474.5 59
16 GiB 3212 5.401 58.3 70.02 26.22 1.04
16 GiB 12822 | 5.286 134.5 330.7 1524 2.87
16 GiB 102472 | 8.054 130 406.7 465.5 60.1
10.2 NFS

10Gb Ethernet connection (Intel X520) through several 10Gb switches into a 100Gb campus backbone into a modern
multi-petabyte Isilon fileserver, mounted with NFSv3.

69

GSD Documentation, Release 1.6.0

Size N Open (ms) | Write (MB/s) | Read (MB/s) | Random (MB/s) | Random (ms)
128 MiB | 3272 16.34 42.24 84.79 39.24 0.697
128 MiB | 12872 11.14 172.2 192.6 142.7 3.07
128 MiB | 102472 | 10.16 163.5 161.1 186.3 150
1 GiB 3272 18.54 56.64 76.98 18.41 1.49
1 GiB 12872 10.93 227.6 197.1 70.84 6.18
1 GiB 102472 | 17.35 2535 166.8 155.6 180
128 GiB | 3272 146.9 55.34 75.62 2.111 13
128 GiB | 128*2 | 29.95 265.3 3535 27.03 16.2
128 GiB | 102472 | 34.83 319.3 225.9 116.7 240
10.3 HDD

RAID 1 (mdadm) on two ST3000NMO0033-9ZM 178 drives.

Size N Open (ms) | Write (MB/s) | Read (MB/s) | Random (MB/s) | Random (ms)
128 MiB | 3272 36.43 12.92 59 11.63 2.35

128 MiB | 12872 29.68 72.22 175.5 48.23 9.07

128 MiB | 102472 | 10.82 94.69 161.7 167.6 167

1 GiB 3212 52.85 43.03 59.43 4.943 5.53

1 GiB 12872 24.22 115.5 174 33.65 13

1 GiB 102472 | 31.61 123.6 153.7 151.8 184

128 GiB | 3272 113.3 46.26 58.36 2.085 13.1

128 GiB | 12872 90.05 141.8 146.6 21.82 20

128 GiB | 102472 | 51.49 139.4 139.6 140.8 199

70 Chapter 10. Benchmarks

cHAPTER 11

License

GSD is available under the following license.

Copyright (c) 2016-2018 The Regents of the University of Michigan
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

71

GSD Documentation, Release 1.6.0

72 Chapter 11. License

cHAPTER 12

Index

* genindex

¢ modindex

73

GSD Documentation, Release 1.6.0

74 Chapter 12. Index

Python Module Index

g

gsd, 38
gsd.f1,23
gsd.hoomd, 33
gsd.pygsd, 30

75

GSD Documentation, Release 1.6.0

76 Python Module Index

Index

Symbols

__version___ (in module gsd), 39

A

angles (gsd.hoomd.Snapshot attribute), 37
angles/group (data chunk), 58

angles/N (data chunk), 58

angles/typeid (data chunk), 58

angles/types (data chunk), 58

angmom (gsd.hoomd.ParticleData attribute), 36
append () (gsd.-hoomd HOOMDTrajectory method), 35
application (gsd.fl.GSDFile attribute), 24
application (gsd.pygsd.GSDFile attribute), 31

B

body (gsd.hoomd.ParticleData attribute), 36
BondData (class in gsd.hoomd), 33

bonds (gsd.hoomd.Snapshot attribute), 37
bonds/group (data chunk), 58

bonds /N (data chunk), 57

bonds/typeid (data chunk), 58
bonds/types (data chunk), 57

box (gsd.hoomd.ConfigurationData attribute), 34

C

charge (gsd.hoomd.ParticleData attribute), 36
chunk_exists () (gsdfl. GSDFile method), 24
chunk_exists () (gsd.pygsd.GSDFile method), 31
close () (gsd.fl. GSDFile method), 25

close () (gsd.pygsd.GSDFile method), 32
configuration (gsd.hoomd.Snapshot attribute), 37
configuration/box (data chunk), 54
configuration/dimensions (data chunk), 54
configuration/step (data chunk), 54
ConfigurationData (class in gsd.hoomd), 34
ConstraintData (class in gsd.hoomd), 34
constraints/group (data chunk), 60
constraints/N (data chunk), 60
constraints/value (data chunk), 60

create () (in module gsd fl), 28
create () (in module gsd.hoomd), 38

D

diameter (gsd.hoomd.ParticleData attribute), 36

dihedrals (gsd.hoomd.Snapshot attribute), 37

dihedrals/group (data chunk), 59

dihedrals/N (data chunk), 59

dihedrals/typeid (data chunk), 59

dihedrals/types (data chunk), 59

dimensions (gsd.hoomd.ConfigurationData attribute),
34

E

end_frame () (gsd.fl.GSDFile method), 25
extend () (gsd.-hoomd. HOOMDTrajectory method), 35

F

file (gsd.pygsd.GSDFile attribute), 31

G

group (gsd.hoomd.BondData attribute), 33
group (gsd.hoomd.ConstraintData attribute), 35
gsd (module), 38

gsd. £l (module), 23

gsd.hoomd (module), 33

gsd.pygsd (module), 30

gsd_close (C function), 43

gsd_create (C function), 41
gsd_create_and_open (C function), 42
gsd_end_frame (C function), 43
gsd_find_chunk (C function), 43
gsd_get_nframes (C function), 44
gsd_handle_t (C type), 45
gsd_handle_t.file_size (C member), 45
gsd_handle_t .header (C member), 45
gsd_handle_t .open_flags (C member), 45
gsd_header_t (C type), 45
gsd_header_t.gsd_version (C member), 45

77

GSD Documentation, Release 1.6.0

gsd_header_t.schema_version (C member), 46
gsd_index_entry_t (C type), 46
gsd_index_entry_t.frame (C member), 46
gsd_index_entry_t .M (C member), 46
gsd_index_entry_t .N (C member), 46
gsd_index_entry_t.type (C member), 46
gsd_make_version (C function), 44
gsd_open (C function), 41
GSD_OPEN_APPEND (C variable), 45
gsd_open_flag (C type), 46
GSD_OPEN_READONLY (C variable), 45
GSD_OPEN_READWRITE (C variable), 45
gsd_read_chunk (C function), 44
gsd_sizeof_type (C function), 44
gsd_truncate (C function), 42

gsd_type (C type), 46

GSD_TYPE_DOUBLE (C variable), 45
GSD_TYPE_FLOAT (C variable), 45
GSD_TYPE_INT16 (C variable), 45
GSD_TYPE_INT32 (C variable), 45
GSD_TYPE_INT64 (C variable), 45
GSD_TYPE_INTS8 (C variable), 45
GSD_TYPE_UINT16 (C variable), 44
GSD_TYPE_UINT32 (C variable), 45
GSD_TYPE_UINT64 (C variable), 45
GSD_TYPE_UINTS8 (C variable), 44
gsd_version (gsd.fl.GSDFile attribute), 24
gsd_version (gsd.pygsd.GSDFile attribute), 31
gsd_write_chunk (C function), 43
GSDFile (class in gsd.fl), 23

GSDFile (class in gsd.pygsd), 30

H

HOOMDTrajectory (class in gsd.hoomd), 35
hoomdxml2gsd.py command line option
input, 67
output, 67

image (gsd.hoomd.ParticleData attribute), 37
impropers (gsd.hoomd.Snapshot attribute), 37
impropers/group (data chunk), 60
impropers/N (data chunk), 59
impropers/typeid (data chunk), 60
impropers/types (data chunk), 60
input

hoomdxml2gsd.py command line

option, 67

int64_t (C type), 46

M

mass (gsd.hoomd. ParticleData attribute), 36
mode (gsd.fl. GSDFile attribute), 23
mode (gsd.pygsd.GSDFile attribute), 31

moment_inertia (gsd hoomd.ParticleData attribute),
36

N

N (gsd.hoomd.BondData attribute), 33

N (gsd.hoomd.ConstraintData attribute), 34
N (gsd.hoomd. ParticleData attribute), 36
name (gsd.fl. GSDFile attribute), 23

name (gsd.pygsd.GSDFile attribute), 31
nframes (gsd.fl. GSDFile attribute), 24
nframes (gsd.pygsd.GSDFile attribute), 31

O

open () (in module gsd.fl), 29
open () (in module gsd.hoomd), 38
orientation (gsd.hoomd.ParticleData attribute), 36
output
hoomdxml2gsd.py command line
option, 67

P

pairs/group (data chunk), 61

pairs/N (data chunk), 61

pairs/typeid (data chunk), 61
pairs/types (data chunk), 61
ParticleData (class in gsd.hoomd), 35
particles (gsd.hoomd.Snapshot attribute), 37
particles/angmom (data chunk), 57
particles/body (data chunk), 55
particles/charge (data chunk), 55
particles/diameter (data chunk), 55
particles/image (data chunk), 57
particles/mass (data chunk), 55
particles/moment_inertia (data chunk), 56
particles/N (data chunk), 54
particles/orientation (data chunk), 56
particles/position (data chunk), 56
particles/typeid (data chunk), 55
particles/types (data chunk), 55
particles/velocity (data chunk), 57
position (gsd.hoomd.ParticleData attribute), 36

R

read_chunk () (gsd.fl. GSDFile method), 26

read_chunk () (gsd.pygsd.GSDFile method), 32

read_frame () (gsd.hoomd.HOOMDTrajectory
method), 35

S

schema (gsd.fl. GSDFile attribute), 24

schema (gsd.pygsd.GSDFile attribute), 31
schema_version (gsd.fl. GSDFile attribute), 24
schema_version (gsd.pygsd.GSDFile attribute), 31

78

Index

GSD Documentation, Release 1.6.0

Snapshot (class in gsd.hoomd), 37 velocity (gsd.hoomd.ParticleData attribute), 36

state (gsd.hoomd.Snapshot attribute), 37
state/hpmc/convex_polygon/N (data chunk), 64 W

state/hpmc/convex_polygon/vertices (data ywrite_chunk () (gsd.fl. GSDFile method), 27

chunk), 64
state/hpmc/convex_polyhedron/N (data
chunk), 63
state/hpmc/convex_polyhedron/vertices
(data chunk), 63
state/hpmc/convex_spheropolygon/N (data
chunk), 64
state/hpmc/convex_spheropolygon/sweep_radius
(data chunk), 65
state/hpmc/convex_spheropolygon/vertices
(data chunk), 65
state/hpmc/convex_spheropolyhedron/N
(data chunk), 64
state/hpmc/convex_spheropolyhedron/sweep_radius
(data chunk), 64
state/hpmc/convex_spheropolyhedron/vertices
(data chunk), 64
state/hpmc/ellipsoid/a (data chunk), 63
state/hpmc/ellipsoid/b (data chunk), 63
state/hpmc/ellipsoid/c (data chunk), 63
state/hpmc/integrate/a (data chunk), 62
state/hpmc/integrate/d (data chunk), 62
state/hpmc/simple_polygon/N (data chunk), 65
state/hpmc/simple_polygon/vertices (data
chunk), 65
state/hpmc/sphere/radius (data chunk), 62
step (gsd.hoomd.ConfigurationData attribute), 34

T

truncate () (gsd.fl. GSDFile method), 27

truncate () (gsd.hoomd HOOMDTrajectory method),
35

typeid (gsd.hoomd.BondData attribute), 33

typeid (gsd.hoomd.ParticleData attribute), 36

types (gsd.hoomd.BondData attribute), 33

types (gsd.hoomd.ParticleData attribute), 36

U

uint32_t (C type), 46
uint64_t (C type), 46
uint8_t (C type), 46

V

validate () (gsd.hoomd.BondData method), 34

validate () (gsd.hoomd.ConfigurationData method),
34

validate () (gsd.hoomd.ConstraintData method), 35

validate () (gsd.hoomd.ParticleData method), 37

validate () (gsd.hoomd.Snapshot method), 38

value (gsd.hoomd.ConstraintData attribute), 35

Index

79

	Installation
	Change Log
	User community
	HOOMD
	File layer
	gsd python package
	C API
	Specification
	Scripts
	Benchmarks
	License
	Index
	Python Module Index

